Enrollment No:

Exam Seat No:____

C.U.SHAH UNIVERSITY

Summer Examination-2017

Subject Name : Basic Mathematics

Subject Code: 2TE01BMT2 Branch: Diploma(All)

Semester: 1 Date: 22/03/2017 Time: 10:30 To 01:30 Marks: 70

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions:

(14)

- a) Radius of the circle $x^2 + y^2 = 25$ is _____.
 - (a) 5 (b) 25 (c) 25/2 (d) None of these
- **b)** If A(5, -3,) and B(-4, 2) are two points, find slope of AB = ______ (a) -9/5 (b) 9/5 (c) -5/9 (d) 5/9
- c) x intercept of line 2x 6y + 4 = 0 is(a) -2/3 (b) 2/3 (c) -2 (d) 2
- d) If A(-7, 2) and B(3, 8) then mid point of AB =____. (a) (-2,5) (b) (5,-2) (c) (2,5) (d) (5,2)
- e) Order of matrix $\begin{bmatrix} 1 & 2 \\ 2 & 5 \\ 5 & 7 \end{bmatrix}$ is = _____.
 - (a) 2×3 (b) 3×2 (c) 2×2 (d) None of these
- f) If $A = \begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 4 & 2 \end{bmatrix}$ then $A^{T} =$ _____.
 - (a) $\begin{bmatrix} 2 & 1 \\ 1 & 3 \\ 2 & 4 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 3 & 4 \\ 2 & 1 & 2 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 2 \\ 3 & 1 \\ 4 & 2 \end{bmatrix}$ (d) None of these
- $\mathbf{g}) \quad \text{If } \mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ then } \mathbf{A}^2 = \underline{\hspace{1cm}}.$
 - (a) $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
- **h**) If $A = \begin{bmatrix} 7 & 6 \\ 5 & 2 \end{bmatrix}$ then $AI = \underline{\qquad}$.

(a)
$$\begin{bmatrix} -7 & 6 \\ 5 & -2 \end{bmatrix}$$
 (b) $\begin{bmatrix} 7 & -6 \\ -5 & 2 \end{bmatrix}$ (c) $\begin{bmatrix} 7 & 6 \\ 5 & 2 \end{bmatrix}$ (d) None of these

i)
$$12C_5 =$$

j) Number of terms in the expansion of
$$(x + y)^7 = \underline{\hspace{1cm}}$$
.

k)
$$\cos^2 39^\circ + \sin^2 51^\circ =$$

(a) 1 (b)
$$-1$$
 (c) 0 (d) None of these

1)
$$\tan\left(\frac{21\pi}{4}\right) = \underline{\hspace{1cm}}$$

(a)
$$\frac{-1}{\sqrt{3}}$$
 (b) $\frac{1}{\sqrt{3}}$ (c) 1 (d) $\sqrt{3}$

m)
$$270^{\circ} =$$
 _____ Radian

(a)
$$\frac{\pi}{6}$$
 (b) $\frac{\pi}{3}$ (c) $\frac{3\pi}{2}$ (d) $\frac{\pi}{4}$

n)
$$\frac{3\pi}{2}$$
 Radian = _____ Degree

(a)
$$30^{\circ}$$
 (b) 45° (c) 60° (d) 270°

Attempt any four questions from Q-2 to Q-8

Q-2 Attempt all questions

a) Prove that (12, 8), (-2, 6) and (6, 0) are the vertices of an isosceles right angled triangle.

b) If
$$A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
 then prove that $A^2 - 4A - 5I = O$. (5)

c) Find the 4th term of
$$\left(\frac{x}{a} - \frac{a}{x}\right)^{10}$$
. (4)

Q-3 Attempt all questions

(14) (5)

a) Find the equation of circle having centre
$$(4, 3)$$
 and passing through $(7, -2)$.

b) Solve the following equations by matrix method:
$$5x + 3y = 11$$
 and $3x - 2y = -1$ (5)

c) If
$$A = \begin{bmatrix} 2 & 2 & 2 \\ 2 & 1 & -3 \\ 1 & 0 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 3 & 3 \\ 3 & 0 & 5 \\ 9 & 9 & -1 \end{bmatrix}$ and $C = \begin{bmatrix} 4 & 4 & 4 \\ 5 & -1 & 5 \\ -7 & 8 & -1 \end{bmatrix}$ then find (4)

$$2A - 3B + C$$
.

Q-4 Attempt all questions

(14)

a) If
$$A + B = \begin{bmatrix} 1 & -1 \\ 3 & 0 \end{bmatrix}$$
 and $A - B = \begin{bmatrix} 3 & 1 \\ 1 & 4 \end{bmatrix}$ then find $(AB)^{-1}$. (5)

b) Using binomial theorem, find the approximate value of
$$(102)^{\frac{1}{2}}$$
 and $\sqrt[3]{126}$. (5)

Q-5 Attempt all questions

Attempt all questions (14)
a) If
$$A = \begin{bmatrix} 2 & 3 \\ 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 3 & 4 \\ 2 & 1 \end{bmatrix}$ then prove that $(AB)^{T} = A^{T}B^{T}$. (5)

b) Find the constant term of
$$\left(2x^2 - \frac{1}{x}\right)^6$$
. (5)

c) If A(2, 3), B(4, 7) and C(
$$-5$$
, -1) are the vertices of \triangle ABC, find the length of its median AD. (4)

Attempt all questions **Q-6**

(14)Find the equation of straight line passing through (-1, -2) and perpendicular to line **(5)** $\frac{x}{3} + \frac{y}{4} = 1$.

b) Draw the graph of
$$y = \cos x \quad \left(-\frac{\pi}{2} \le x \le \frac{\pi}{2} \right)$$
. (5)

c) Prove that
$$\tan 55^{\circ} = \frac{\cos 10^{\circ} + \sin 10^{\circ}}{\cos 10^{\circ} - \sin 10^{\circ}}$$
. (4)

Q-7 Attempt all questions

(14)In which ratio X – axis divides line segment joining points (2, 2) and (-3, 6)? Find **(5)** co ordinates of division point.

b) Prove that
$$\frac{\sin 4x + \sin 5x + \sin 6x}{\cos 4x + \cos 5x + \cos 6x} = \tan 5x$$
. (5)

b) Prove that
$$\frac{\sin 4x + \sin 5x + \sin 6x}{\cos 4x + \cos 5x + \cos 6x} = \tan 5x$$
. (5)
c) If $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 3 & -2 & 4 \\ 1 & 5 & 0 \end{bmatrix}$ then find matrix X from X + A + B = 0. (4)

Q-8 Attempt all questions

Prove that $8\sin 10^{\circ} \sin 50^{\circ} \sin 70^{\circ} = 1$. **(5)**

b) Prove that
$$\frac{\cos(90^{\circ} - A)\cos(180^{\circ} - A)\tan(180^{\circ} + A)}{\sin(90^{\circ} - A)\sin(180^{\circ} - A)\tan(180^{\circ} - A)} = 1.$$
 (5)

If (3, 8), (4, 2) and (-1, 5) are the vertices of a triangle, find the co ordinates of its **(4)** centroid.

(14)